paper-plane envelope home office pencil quill pen image images camera play bullhorn connection mic file-text2 file-picture file-music file-play file-video copy folder folder-open folder-plus folder-minus folder-download folder-upload price-tag price-tags ticket phone envelop pushpin location compass map map2 clock alarm fax mobile bubble bubbles user users user-plus user-minus user-check quotes-left quotes-right search pie-chart stats-dots stats-bars airplane cloud-download cloud-upload earth link flag eye eye-blocked arrow-up-left arrow-up arrow-up-right arrow-right arrow-down-right arrow-down arrow-down-left arrow-left2 share amazon google-plus google-drive facebook instagram twitter rss youtube flickr dropbox linkedin file-pdf file-openoffice file-word file-excel
XClose

UCL Mechanical Engineering
Faculty of Engineering Sciences

Home
Menu

MECHGR12 Electrical Power Systems and Electrical Propulsion

MECHGR12 Electrical Power Systems and Electrical Propulsion

To achieve competency in using analytical methods for understanding the design and operational behaviour of electrical power systems under steady-state and transient conditions. To provide technical knowledge in electrical power system technologies such as generators, cables, distribution and protection, and end-use equipment so as to appreciate the design features for different electrical power distribution and electrical propulsion systems. To use computer based software (PSCAD is used presently) and with understanding of their algorithms become proficient at calculating performance parameters in small and large scale electrical power systems used in electric vehicle, electric ship or grid systems.

Code: MECHGR12
Alt Codes: MECHM018
Title: Electrical Power Systems and Electrical Propulsion
UCL Credits/ECTS: 15/6
Start: September
End: March
Level: MSc, MEng

Prerequisites

  • Mathematics to second year undergraduate level to include complex number theory, ordinary differential equations linear, non-linear 1st order and linear 2nd order homogenous with constant coefficients. Electricity at first year undergraduate level to include basic theory and circuit analysis i.e. Kirchoff’s Laws, Ohm’s Law, Faraday’s law, Thevenin/Norton equivalent circuits, single-phase, three-phase and dc circuit analysis.

Students having successfully completed the course will have the ability to:

  • Appreciate the range of electrical power systems and understand why different designs are used in different power and propulsion applications.
  • Analyse electrical power systems so as to calculate key parameters such as torque, speed, efficiency, and power under steady-state and transient conditions.
  • Use computer based simulation tools to analyse electrical power systems with an understanding of the mathematical algorithms upon which such tools are based and apply this skill to the design and analysis a specified electrical power and propulsion system.
  • Understand the ‘state of the art’ in electrical power systems and appreciate advances in technologies and control that are influencing future designs.

Content

Electrical power system types; impedance and admittance methods of analysis; load flow; fault analysis – symmetrical and non-symmetrical faults; harmonic analysis; protection; synchronous generators and their control – AVR and Governor; modern control methods for networks; smart networks; electrical propulsion in ships; electrical propulsion in road vehicles; traction electrical propulsion; smart networks; DC and AC distribution systems for land and sea transmission networks; impact of new technologies such as offshore power generation.

Method of Instruction

Levelling (2 hrs); Classroom lectures (22 hrs); Computer based learning (2 hrs); Classroom tutorials (6 hrs); Revision (2 hrs). Laboratory demonstration is also provided.

Assessment

The course has the following assessment components:

  • Written Examination (2 hours, 65%) to be sat in March.
  • 1 piece of coursework (10 hours 35%) to be submitted in March

The examination rubric is:

Answer THREE questions (from eight offered) in 2 hours.

The coursework rubic:

Design an electrical power system:

Students choose either an electrical power and propulsion system for a ship or an electrical power system that integrates an offshore wind farm with the national grid system or to an island network.

Resources

  • There are various papers provided by the lecturer covering the course.
  • PSCAD electrical system simulation package.
  • Renewed electrical power laboratory.

Recommended text book:

Power Systems Analysis and Design, J. Duncan Glover , Mulukutla S. Sarma, Thomas Overbye. ISBN-10: 0534953670 Cengage Learning, (2008 revised). Available at UCL Libraries.

Additional Information

Guest lecturers are invited to give lectures on specific topics. E.g. Electrical traction systems (Network Rail); marine electrical propulsion (Converteam/GE); BAE Systems Hybrid Bus propulsion.

Visits are arranged to a Power Station and National Grid Control Centre and an electrical ship.

Learning Outcomes

(EAB website http://www.enoab.oro.uk/documentation – “Accreditation Of Masters Degrees Other Than” last accessed 10 April 2012)

MECHGR12, MECHM018

General Learning Outcomes

  • Ability to develop, monitor & update a plan, to reflect a changing operating environment N/A
  • Ability to monitor and adjust a personal program of work on an on-going basis, and to learn independently
    • As with all taught modules on the programme a significant amount of self-learning is expected by way of additional reading (directed and current) and analytical problem solving.
  • The ability to exercise initiative and personal responsibility, which may be as a team member or leader N/A
  • The ability to learn new theories, concepts and methods etc. and apply these in unfamiliar situations
    • The module is designed to present new subject matter at M level understanding of which is then tested by an exam and a case study design exercise.

Specific Learning Outcomes

Underpinning science & mathematics

A comprehensive understanding of the relevant scientific principles of the specialisation

  • The module is designed to teach students the underpinning theory required for understanding the design and behaviour of electrical power systems under steady-state, transient and faulted conditions. This is reinforced through analysis and computer bases studies. Application studies include large, small and micro-electrical systems.

A critical awareness of current problems and/or new insights much of which is at, or informed by, the forefront of the specialisation.

  • The whole subject area is rapidly developing with electrification of transport and national grid systems and the module strives to keep up to date with latest developments feeding in output from the department’s research including electrification of transport and offshore power generation/distribution studies and including industry lectures in topical areas.

An understanding of concepts relevant to the discipline, some from outside engineering, and the ability to critically evaluate and apply them effectively.

  • The module is designed to accept students with basic electrical analysis skills with strong mathematical skills and presents new subject matter at M level specifically focused on electrical power and propulsion systems, the understanding of which is then tested by an exam and a single substantial piece of coursework that involves both design using computer based and analytical skills.

Engineering Analysis

Ability to use fundamental knowledge to investigate new and emerging technologies

  • The module strives to keep abreast of the state of the art and provide students with the tools to understand these and appreciate advances in technology and control that are influencing future designs. Students are taught fundamental knowledge and are exposed to new and emerging technologies through lectures on specific topics that exposes the universities own research activities and from industrial lecturers in fields such as electrification of transport, low carbon shipping, offshore power generation, etc. The assessed design/case study undertaken as part of the course is in topic fields such as marine electrical propulsion and offshore renewable power systems.

Ability to apply appropriate models for solving problems in engineering and the ability to assess the limitations of particular cases;

  • Analytical analysis of load flow, harmonic analysis, transient analysis, fault analysis, etc. are provided as part of the taught course in the form of class examples and tutorial sheets for self-study. Problem solving is initially for single cases with set boundary conditions e.g. load flow analysis is initially undertaken without consideration of AVR or governor action. Once mastered students move on to examine larger systems with boundary conditions extended or removed. Students are provided the opportunity to use computer based software and given an understanding of the algorithm design, to enable them to become proficient at calculating performance parameters in more complex systems whether in an electric vehicle, electric ship or grid system.

The ability to collect and analyse research data and use appropriate engineering tools to tackle unfamiliar problems, such as those with uncertain or incomplete data or specifications, by the appropriate innovation, use or adaptation of engineering analytical methods. N/A

Design

The ability to apply original thought to the development of practical solutions for products, systems, components or processes: N/A

Economic, Social and Environmental Context

Knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately, in the context of the particular specialisation N/A

The ability to make general evaluations of risks through some understanding of the basis of such risks N/A

Engineering Practice

A thorough understanding of current practice and its limitations, and some appreciation of likely new developments

  • Students are exposed to regulations both national and international e.g. Lloyds Register Rules are used for marine electrical propulsion systems, and are expected to refer to these when undertaking their design case study work. The case study work is focused in current developments and supported by specific lectures by in-house researchers and industry lecturers e.g. offshore wind farm design/case study is supported by a site visit and guest lecturer. Students are also given directed reading and encouraged to read relevant publications/magazines.

Advanced level knowledge and understanding of a wide range of engineering materials and components N/A

The ability to apply engineering techniques taking account of a range of commercial and industrial constraints

  • Students learn engineering techniques in classroom by first grasping fundamental analysis of steady-state, transient and fault analysis and behaviour building up from simple systems to large power systems using hand analysis before using computer simulation. The commercial and industrial constraints are inputted in the design / case studies where commercial and industrial design limitations are applied though analysis of industry data sheets. This is reinforced by in-house and industry lecturers working in specific fields e.g. making students aware of commercial developments e.g. AC and DC power distribution is discussed in context of all types of electrical power systems.
Back to top