paper-plane envelope home office pencil quill pen image images camera play bullhorn connection mic file-text2 file-picture file-music file-play file-video copy folder folder-open folder-plus folder-minus folder-download folder-upload price-tag price-tags ticket phone envelop pushpin location compass map map2 clock alarm fax mobile bubble bubbles user users user-plus user-minus user-check quotes-left quotes-right search pie-chart stats-dots stats-bars airplane cloud-download cloud-upload earth link flag eye eye-blocked arrow-up-left arrow-up arrow-up-right arrow-right arrow-down-right arrow-down arrow-down-left arrow-left2 share amazon google-plus google-drive facebook instagram twitter rss youtube flickr dropbox linkedin file-pdf file-openoffice file-word file-excel

UCL Mechanical Engineering
Faculty of Engineering Sciences


PhD: Use of ammonia as energy vector for power generation and propulsion

Mechanical Engineering
Full tuition fees and tax-free stipend of £17,285 per annum (for 3 years).

About the Project

n the aim to reduce carbon footprint and environmental impact of the energy sector, there is a huge drive to decarbonise existing combustion technologies. Gas turbines will be essential components of the future energy ecosystem, and hence manufacturers are striving to develop turbines which offer high efficiencies with low/zero pollutant emissions. Ammonia is a potential carbon-free energy vector which can be used directly for combustion of as a carrier for hydrogen. However, the use of either of these fuels with current gas turbines has considerable scientific challenges due to issues of flame instability, flashback, combustion oscillations and pollutant emissions.

This studentship is linked to an EPSRC funded project (further details: and will involve developing a fundamental understanding of flame stabilisation and dynamics relevant to ammonia combustion. The project will involve utilisation of optical diagnostic techniques to study these phenomena as they enable highly-resolved, non-intrusive measurements of flame structure and species. Additionally, the research will focus on understanding the thermoacoustic behaviour of ammonia combustion systems, particularly non-linear flame response. The candidate will be working with a group of highly driven and specialist researchers at UCL and will have opportunities to liaise with leading industrial companies who are part of this project. Understanding fundamental ammonia flame behaviour will allow development of effective retrofitting strategies for existing engine infrastructure.

The position will also offer opportunities to engage in teaching assistant activities, and work with researchers and engineers in the Energy and Environment group. As a PhD student at UCL, the candidate will benefit from training in high-impact research and high-performance computing, and access to state-of-the-art experimental laboratories. Furthermore, the candidate will be encouraged to publish work in leading journals and present findings in national/international conferences.

Person Specification

Applicants must have a first class of upper 2:1 degree in engineering, chemistry, physics or related discipline, with an interest in thermofluids, experimental characterisation, and data analysis. Excellent organisational, interpersonal and communication skills are essential. Background in thermodynamics, fluid mechanics, design (CAD) and MATLAB is desirable.

Application Process

Eligible applicants should first contact Professor Rama Balachandran () or Dr Midhat Talibi () quoting the job reference. Please enclose a one-page statement outlining suitability for the project and two pages CV (including contact details of two referees). The supervisory team will arrange interviews for short-listed candidates. After interview, the successful candidate will be given instructions to formally apply online via the UCL website. For further information, click here.

FindAPhD Listing 

Back to top